福佑德换热器清洗 – 第 45 页 – 山东福佑德环保工程有限公司是专业从事清洗业务的公司,公司清洗范围:锅炉清洗、换热器 清洗、河道清淤、管道清洗、油罐清洗、管道酸洗钝化、塔器类清洗、反应器类清洗等服务 19953136015

冷凝器侧应用知识分析!

冷凝器侧应用:

1 冷却塔水冷却凝结水

2 海水、河水或井水冷却凝结水

3 乙二醇冷却凝结水

4 短路冷冻机组系统

5 地下水冷/热源系统

6 热回收系统

冷凝水侧热交换器可以起到以下作用:

保护冷凝器免受污染、结垢和腐蚀

代替冷凝器承受冷却水侧压力

能够在季节许可时不运行冷冻机组

能够实现热回收

节省昂贵的添加剂

冷却塔水冷却凝结水

图片

海水、河水、或井水冷却凝结水

图片

乙二醇冷却凝结水

短路冷冻机组系统

地下水冷/热源系统

图片

热回收系统

图片

蒸发侧的应用:

1 压力接力系统

2 分离冷却循环水 (无压力接力功能)

3 蓄冰系统

4 区域供冷系统

5 天花板供冷系统

蒸发器侧热交换器可以起到以下作用:

避免冷冻机组承受高压(压力接力系统)

减少昂贵、低效添加剂的用量

分离冷却水系统,以保证局部系统清洁度很高(电子元件生产)

减少泄漏所带来的损害


板式换热器结垢堵塞的主要原因及其危害

板式换热器结垢堵塞的主要原因及其危害

供热领域中,由于水处理设备运行不当,未达到软化要求的软化水直接补入系统中,使水中的可溶性钙、镁盐遇热分解为碳酸钙和氢氧化镁沉淀物黏结在换热器的受热面上,形成了坚硬的水垢。由于水垢的导热性能差,造成了换热器换热效率的降低以及系统阻力的增加,从而影响了供热的效果,给供热单位造成了严重的能源浪费。

工业系统中,带有颗粒物和纤维的流体进入换热器,当换热器流速设计不合理或者流道宽度小于允许宽度时,颗粒物和纤维就会慢慢沉积在换热器流道底部,造成换热器流通不畅阻力增加,严重时换热器不再换热,严重影响系统工艺运行。


板式换热器清洗民用结垢和工艺堵塞的清洗方式

板式换热器民用结垢和工艺堵塞的清洗方式

2.1.清洗剂的选择

清洗剂的选择,目前采用的是酸洗,它包括有机酸和无机酸。有机酸主要有:草酸、甲酸等。无机酸主要有:盐酸、硝酸等。根据换热器结垢和工艺、材质和水垢成分分析得出:

1)换热器流通面积小,内部结构复杂,清洗液若产生沉淀不易排放。

2)换热器材质为镍钛合金,使用盐酸为清洗液,容易对板片产生强腐蚀,缩短换热器的使用寿命。

通过反复试验发现,选择甲酸作为清洗液效果最佳。在甲酸清洗液中加入缓冲剂和表面活性剂,清洗效果更好,并可降低清洗液对板片的腐蚀。

通过对水垢样本的化学试验研究表明,甲酸能够有效地清除水垢。通过酸液浸泡试验,发现甲酸能有效地清除附在板片上的水垢,同时它对换热器板片的腐蚀作用也很小。

2.2.清除水垢的基本原理

1)溶解作用:酸溶液容易与钙、镁碳酸盐水垢发生反应,生成易溶化合物,使水垢溶解。

2)剥离作用:酸溶液能溶解金属表面的氧化物,破坏与水垢的结合,从而使附着在金属氧化物表面的水垢剥离,并脱落下来。

3)气掀作用:酸溶液与钙、镁、碳酸盐水垢发生反应后,产生大量的二氧化碳。二氧化碳气体在溢出过程中,对于难溶或溶解较慢的水垢层,具有一定的掀动力,使水垢从换热器受热表面脱落下来。

4)疏松作用:对于含有硅酸盐和硫酸盐混合水垢,由于钙、镁、碳酸盐和铁的氧化物在酸溶液中溶解,残留的水垢会变得疏松,很容易被流动的酸溶液冲刷下来。

2.1.清洗水垢的工艺要求

1)酸洗温度:提升酸洗温度有利于提高除垢效果,如果温度过高就会加剧酸洗液对换热器板片的腐蚀,通过反复试验发现,酸洗温度控制在60℃为宜。

2)酸洗液浓度:根据反复试验得出,酸洗液应按甲酸81.0%、水17.0%、缓冲剂1.2%、表面活性剂0.8%的浓度配制,清洗效果极佳。

3)酸洗方法及时间:酸洗方法应以静态浸泡和动态循环相结合的方法进行。酸洗时间为先静态浸泡2h,然后动态循环3 ̄4h。在酸洗过程中应经常取样化验酸洗浓度,当相邻两次化验浓度差值低于0.2%时,即可认为酸洗反应结束。

4)钝化处理:酸洗结束后,板式换热器表面的水垢和金属氧化物绝大部分被溶解脱落,暴露出崭新的金属,极易腐蚀,因此在酸洗后,对换热器板片进行钝化处理。

2.4.清洗水垢的具体步骤

1)冲冼:酸洗前,先对换热器进行开式冲洗,使换热器内部没有泥、垢等杂质,这样既能提高酸洗的效果,也可降低酸洗的耗酸量。

2)将清洗液倒入清洗设备,然后再注入换热器中。

3)酸洗:将注满酸溶液的换热器静态浸泡2h,然后连续动态循环3 ̄4h,其间每隔0.5h进行正反交替清洗。酸洗结束后,若酸液pH值大于2,酸液可重复使用,否则,应将酸洗液稀释中和后排掉。

4)碱洗:酸洗结束后,用NaOH,Na3PO4,软化水按一定的比例配制好,利用动态循环的方式对换热器进行碱洗,达到酸碱中和,使换热器板片不再腐蚀。

5)水洗:碱洗结束后,用清洁的软化水,反复对换热器进行冲洗0.5h,将换热器内的残渣彻底冲洗干净。

6)记录:清洗过程中,应严格记录各步骤的时间,以检查清洗效果。

在工业系统例如电厂和大量污水处理中,由于换热器非常大,水质很脏,换热器会出现经常性的堵塞和结垢,此时换热器再拆开处理就变得非常困难。解决的办法主要是系统反向冲洗和内置过滤器。

常规反向冲洗系统是在换热器进出口管道上安装反向冲洗阀,冲洗阀口径要和系统管路相匹配,当系统运行阻力大于设计阻力一倍时,可以判断换热器发生了堵塞,此时应停止换热器运行,关闭换热器进出口阀门,换热器出口冲洗阀接至少0.2MPA压力清水,打开换热器出口和进口清洗阀,清水从换热器进口清洗阀流出,当流出的水从浑浊变清澈后,可以重新接入洗垢用的清洗剂,对换热器进行去垢处理。

还有一种办法是在换热器水质比较脏的一侧,例如开式循环水侧,在换热器的进口通径中,装入和换热器通径大小一致的内置滤网,开式水进入换热器前,会先经过内置滤网过滤,然后才会进行换热。运行一段时间后,就可从换热器背板盲法兰处,打开盲法兰,把内置滤网抽出,进行冲洗或更换滤网,此种工艺也同样不用拆开换热器就可以进行清洗,节约了时间和资源,也不会影响工艺生产。

但是要说明的是,无论是反向冲洗还是内置过滤装置,对换热器的堵塞和结垢都只是起了延缓作用,而不能真正解决换热器的堵塞和结垢,要想延长换热器堵塞时间,最主要还是要从换热器初始设计时就要选择更加合理不宜堵塞的板型。要想完全去除换热器的水垢,还是要把换热器拆开进行酸洗和碱洗处理。

最后,换热器拆开清洗结束后,要对换热器进行打压试验,合格后方可使用。


最全面的板式换热器知识

板式换热器是由一系列具有一定波纹形状的金属片叠装而成的一种新型高效换热器。各种板片之间形成薄矩形通道,通过板片进行热量交换。板式换热器是液—液、液—汽进行热交换的理想设备。它具有换热效率高、热损失小、结构紧凑轻巧、占地面积小、安装清洗方便、应用广泛、使用寿命长等特点。

图片

板式换热器基本结构及运行原理

板式换热器的型式主要有框架式(可拆卸式)和钎焊式两大类,板片形式主要有人字形波纹板、水平平直波纹板和瘤形板片三种。

钎焊换热器结构

主要结构

⒈板式换热器板片和板式换热器密封垫片

⒉固定压紧板

⒊活动压紧板

⒋夹紧螺栓

⒌上导杆

⒍下导杆

⒎后立柱

由一组板片叠放成具有通道型式的板片包。两端分别配置带有接管的端底板。

整机由真空钎焊而成。相邻的通道分别流动两种介质。相邻通道之间的板片压制成波纹。型式,以强化两种介质的热交换。在制冷用钎焊式板式换热器中,水流道总是比制冷剂流道多一个。

图片图示为单边流,有些换热器做成对角流,即:Q1和Q3容纳一种介质,而Q2和Q4容纳另一种介质。

图片

所有都是螺杆和螺栓结构,便于现场拆卸和修复。

运行原理

板式换热器是由带一定波纹形状的金属板片叠装而成的新型高效换热器,构造包括垫片、压紧板(活动端板、固定端板)和框架(上、下导杆,前支柱)组成,板片之间由密封垫片进行密封并导流,分隔出冷/热两个流体通道,冷/热换热介质分别在各自通道流过,与相隔的板片进行热量交换,以达到用户所需温度。

每块板片四角都有开孔,组装成板束后形成流体的分配管和汇集管,冷/热介质热量交换后,从各自的汇集管回流后循环利用。

图片
换热原理:间壁式传热。

单流程结构:只有2块板片不传热-头尾板。

图片
双流程结构:每一个流程有3块板片不传热。

图片

板片和流道

通常有二种波纹的板片 (L 小角度和 H大角度),这样就有三种不同的流道(L, M 和 H),如下所示:

L:小角度 图片
由相邻小夹角的板片组成的通道。传热系数低,阻力小。适用于大流量,传热弱(低比热或温差小)的情况,如:环境压力下的空气传热。
H:大角度 图片
由相邻大夹角的板片组成的通道。传热系数高,阻力大。适用于小流量但传热强(高比热,有相变或大温差)的情况,如:制冷剂相变传热。
M:通道 图片
由相邻大/小夹角的板片组成的通道。传热系数和阻力介于H和L通道之间。
L+L = 小角度流道 图片
图片

L+H = 混合流道

H+H=大角度流道 图片
图片

在这三种流道中选择,并根据特殊的工况定身量做和选型。

理论上,一台换热器可以混用不同类型的流道,如H型之后是M型。

但对于有相变的情况,这会导致第一个H流道和最后一个M流道之间介质的分配失调,因此,在各类制冷用BPHE中不予采用。

图片

板片波纹的主要作用:使得流体紊流,强化传热相邻板片的波纹形成接触抗点,提高耐压性能。

图片

注:巧克力分布去:使流体均匀流过整个板片,在 A 和B处的压力降相同,使在这里的压力损失最小,把压力降用于有效的传热,允许平行流AlfaLaval 创造发明创造,现已被广泛应用。如下图。

图片
平行流与对角流:

图片

平行流的优势:一块板片 & 一条密封垫,同一的板片在板片组里,旋转180º可以用于二边通道备件损耗小。完全满足对角流所有的功能,较高的设计压力或使用较薄的板片没有交叉出管口。

图片


板式换热器维修​不锈钢:指耐空气、蒸汽、水等弱腐蚀介质和酸、碱

不锈钢:指耐空气、蒸汽、水等弱腐蚀介质和酸、碱、盐等化学浸蚀性介质的钢,又称不锈耐酸钢。实际应用中,常将耐弱腐蚀介质的钢称为不锈钢,而将耐化学介质的钢称为耐酸钢。两者在化学成分上存在一定差异,前者不一定耐化学介质腐蚀,而后者则一般均具有不锈性。不锈钢的耐蚀性取决于钢中所含的合金元素。

耐腐蚀机理:铬是不锈钢获得耐蚀性的基本元素,当钢中含铬量达到12%左右时,铬就与腐蚀介质中的氧作用,在钢表面形成一层很薄的氧化膜( 自钝化膜Cr2O3),极难溶于水,可进一步阻止氧与铁腐蚀。同理,破坏钝化膜Cr2O3 就意味着破坏其抗氧腐蚀能力。

另外腐蚀介质中的卤族元素(像水中常见的氯离子)在一定条件下也能替换掉Cr,所以不锈钢在一定条件下也会生锈,在含酸、碱、盐的介质中也会被腐蚀,。因此不锈钢抗腐蚀能力的大小是随其钢质本身化学组成、加互状态, 使用条件及环境介质类型而改变的。不锈钢在水中腐蚀主要是由于水中氯离子引起的。

不锈钢中其余添加元素也均发挥不同作用。像Mo会在一定程度上抵消氯离子引起的腐蚀,但是也有一个适用范围。

常用不锈钢:304,316属于奥氏体不锈钢,其牌号为国外叫法的简写(一般均为进口),为300系列。美国牌号是美国钢铁协

会AISI标准,日本是日本工业协会标准SUS。中国主要用成分表示,见下表。

图片
304、304L、316、316L的成分区别。L的含义是Low,表示更低含量的碳。带L的焊接性能好,数字一样的话,成分除碳以外其余成分无大区别。又由于316与316L价格差别不大,故直接选用316L。从成分表中可以看出304与316最大区别为Mo(钼)含量不同,所以316抗氯离子浓度能力要比304强。也是我们选用304还是316的主要依据。两种材质在耐受的氯离子浓度见下页表格,板材的补充说明:

不锈钢在含氯介质中的使用范围(mg/L)(在水介质中与ppm百万分之一等同)

板片材料/温度

25℃

50℃

75℃

100℃

120℃

304/304L

100

75

40

20

10

316/316L

400

180

120

50

25

氯离子浓度超出的话,选用钛(Ti)或其它金属。如海水用钛(Ti)

板片常用材料的特点和使用条件补充

评价材料耐蚀性好坏的指标是“耐局部腐蚀当量PRE”值越大则耐腐蚀性越好。主要是Cr、MO、Ni的含量决定。

1)304不锈钢:使用于有机和无机介质中,浓度<30% 温度<=100/浓度﹥30% 温度﹤50的硝酸温度﹤100的各种浓度的碳酸、氨水和醇类。304L的材料基本和304材料一样,可焊接性更好,可以用作焊接式换热器。

2)316L天然冷却水、冷却塔水、软化水、碳酸,浓度小于50%的醋酸和苛性钠溶液,醇类和丙酮等溶剂,温度小于100度的稀硝酸(﹤20%)稀磷酸(﹤30%),但不适于硫酸。316和它基本一样。

3)317适合比316L使用条件更多的情况。

4)AISI904L和SUS890L 性价比高,比以上材料都要好。特别适合一般的硫酸,磷酸和卤化物。

5)SMO 254高级不锈钢,提高了MO 含量,是对316进行改良的超级不锈钢。具有优良的耐氯化物和缝隙腐蚀的性能。适用于含盐水,无机酸。

6)SMO654比254更好的材料,可用于冷的海水。

7)RS-2(0Cr20Ni26Mo3Cu3Si2Nb)不锈钢,这是国产的相当于316,耐应力腐蚀更好,可用于80度以上的浓硫酸。(浓度90%—98%)

备注:具体可见下表:


关于板式换热器垫片的一些小知识!

关于板式换热器垫片

垫片作为换热器板片间的密封元件,是为了防止板片泄漏的。垫片的质量好坏直观地影响换热器的质量和形象。在暖通行业,垫片主要为橡胶制品,受温度、介质影响大,因此在制作过程中受配方、组分的均匀度、硫化定型的条件影响很大。

图片

对垫片的要求:(以下建议不针对任何品牌及暖通南社不持立场)

1、配方科学,必须具有抗老化、抗撕裂、高回弹的特性(降低弹性引起的反作用力,板片不易变形)。

2、密封接触面尺寸精确,报警信号孔灵敏。

3、免粘接结构,拆装方便。

垫片的品牌:国内用户认可的胶条生产厂家:如

1、国内品牌:武汉派克(北京市场很认)、西安联谊、江苏启东等。

2、国外品牌:美国杜邦等。

垫片的定位形式:

1、粘合式垫片

2、免粘接垫片:挂式、卡式

垫片的选型:

1、介质的温度,见下表:图片 2、介质的腐蚀性

板式换热器在暖通空调领域的应用

区域供热系统

图片

热电联产系统

图片

地热水供暖系统

图片

即热式生活热水系统

即热式特点

可保证用户随时随地均有热水供应,系统紧凑,无需储罐,需要较大的锅炉容量需要较大的热交换器。

半即热式生活热水系统

半即热式特点

需要较小的锅炉容量,需要较小的热交换器,储罐内易生长细菌,需要额外的地方安放储罐。

游泳池恒温保持系统

太阳能热水系统

图片

供冷空调系统


板式热交换器结垢的清洗方法你知道吗?

板式热交换器结垢的清洗方法

1、机械清洗(因为垢硬,必须用铁刷刷)是最简单的清洗方法,但弊端是:

①对板片有划伤,而且刷后更易挂垢。

②工人在冷水中作业,劳动条件差。

③清洗时必须将热交换器拆开,对板片及胶条有损害,劳动强度大。

2、化学方法清洗:目前采用的是酸洗,通过试验发现,选择甲酸及草酸作为清洗液效果较好,又不腐蚀热交换器板片。

(1)甲酸清洗。在甲酸清洗液中加入缓冲剂和表面活性剂,清洗效果更好,并可降低清洗液对板片的腐蚀。

①清除水垢的基本原理

a溶解作用:酸溶液容易与钙、镁、碳酸盐水垢发生反应,生成易溶化合物,使水垢溶解。

b剥离作用:酸溶液能溶解金属表面的氧化物,破坏与水垢的结合,从而使附着在金属氧化物表面的水垢剥离,并脱落下来。

c气掀作用:酸溶液与钙、镁、碳酸盐水垢发生反应后,产生大量的CO2.CO2气体在溢出过程中,对于难溶或溶解较慢的水垢层,具有一定的掀动力,使水垢从热交换器受热表面脱落下来。

d疏松作用:对于含有硅酸盐和硫酸盐混合水垢,由于钙、镁、碳酸盐和铁的氧化物在酸溶液中溶解,残留的水垢会变得疏松,很容易被流动的酸溶液冲刷下来。

②清洗水垢的工艺要求

a酸洗温度:提升酸洗温度有利于提高除垢效果,如果温度过高就会加剧酸洗液对热交换器板片的腐蚀,酸洗温度扼制在60℃为宜。

b酸洗液浓度:根据试验,酸洗液应按甲酸81.0%、水17.0%、缓冲剂1.2%、表面活性剂0.8%的浓度配制,清洗效果极佳。

c酸洗方法及时间:酸洗方法应以静态浸泡和动态循环相结合方法进行。酸洗时间为先静态浸泡2h,然后动态循环3h~4h.在酸洗过程中应经常取样化验酸洗浓度,当相邻两次化验浓度差值低于1.2%

时,即可认为酸洗反应结束。

d钝化处理:酸洗结束后,板式热交换器表面的水垢和金属氧化物绝大部分被溶解脱落,暴露出崭新的金属,极易腐蚀,因此在酸洗后,对热交换器板片应进行钝化处理。

③清洗水垢的具体步骤

a冲冼:酸洗前,先对热交换器进行开式冲洗,使热交换器内部没有泥、垢等杂质,这样既能提高酸洗的效果,也可降低酸洗的耗酸量。

b将清洗液倒入清洗设施,然后再注人热交换器中。

c酸洗:将注满酸溶液的热交换器静态浸泡2h,然后连续动态循环3h~4h,其间每隔0.15h进行正反交替清洗。酸洗结束后,若酸液

PH值大于2,酸液可重复使用,否则,应将酸洗液稀释中和后排掉。

d碱洗:酸洗结束后,用磷酸三钠,软化水按一定的比例配制好,利用动态循环的方式对热交换器进行碱洗,达到酸碱中和,使热交换器板片不再腐蚀。

e水洗:碱洗结束后,用清洁的软化水,反复对热交换器进行冲洗0.15h,将热交换器内的残渣彻底冲洗干净。

(2)草酸清洗。首先,根据板片材质及垢的颜色等进行分析,通过实验草酸既能与垢发生反应,对板片又没有腐蚀。


热交换器清洗维修需要了解热交换器工作原理

换热器(heat exchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器在化工、石油、动力、食品及其它许多工业生产中占有重要地位,其在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用广泛。

二、分类

适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如下:

1、按传热原理分类

间壁式换热器

间壁式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面对流,两种流体之间进行换热。间壁式换热器有管壳式、套管式和其他型式的换热器。间壁式换热器是目前应用最为广泛的换热器。

蓄热式换热器

蓄热式换热器通过固体物质构成的蓄热体,把热量从高温流体传递给低温流体,热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之达到热量传递的目的。蓄热式换热器有旋转式、阀门切换式等。

流体连接间接式换热器

流体连接间接式换热器,是把两个表面式换热器由在其中循环的热载体连接起来的换热器,热载体在高温流体换热器和低温流体之间循环,在高温流体接受热量,在低温流体换热器把热量释放给低温流体。

直接接触式换热器

又被称为混合式换热器,这种换热器是两种流体直接接触,彼此混合进行换热的设备,例如,冷水塔、气体冷凝器等。

复式换热器

兼有汽水面式间接换热及水水直接混流换热两种换热方式的设备。同汽水面式间接换热相比,具有更高的换热效率;同汽水直接混合换热相比具有较高的稳定性及较低的机组噪音。

2、按用途分类

加热器

加热器是把流体加热到必要的温度,但加热流体没有发生相的变化。

预热器

预热器预先加热流体,为工序操作提供标准的工艺参数。

过热器

过热器用于把流体(工艺气或蒸汽)加热到过热状态。

蒸发器

蒸发器用于加热流体,达到沸点以上温度,使其流体蒸发,一般有相的变化。

3、按结构分类

可分为:浮头式换热器、固定管板式换热器、U形管板换热器、板式换热器等。

三、各式工作原理图

图片

套管式换热器

图片

焦化厂蓄热室

图片

浮头式换热器

图片

沉浸蛇管换热

图片

板式换热器

图片

具有补偿圈的换热器

图片

板翅式换热器

图片

夹套换热器

图片

U型管式换热器

图片

列管换热器部件

图片

螺旋板式换热器

图片

列管式换热器

图片

喷淋式换热器

图片

气体冷却塔


换热器是一种结构紧凑、高效的换热设备

换热器是一种结构紧凑、高效的换热设备 ,是实现加热、冷却、热回收、快速灭菌等用途的优良设备。但是,由于换热器长期运行,用来冷却或加热侧纯净程度的不同以及工艺介质本身性质的差异导致换热器结垢已成必然 ,造成换热器换热效率降低,从而影响生产的正常进行和设备的安全。因此,换热器应定期进行清洗,除掉污垢,以保证换热器的高效换热和生产的正常进行。

图片  

一、换热器结垢原因、种类及危害

 

1、换热器结垢三大原因

(1)因为常用换热器换热器大多是以水为载热体的换热系统,由于某些盐类在温度升高及浓度较高时从水中析出,附着于换热管表面,形成水垢,随着使用时间及频率的增加积垢层逐渐变厚、变硬,紧紧地附着于换热管表面上;

(2)如同水垢一样,换热器的另一侧流体由于物质本身的性质可能出现非水垢类固体析出物,长期不处理会越来越多积累在换热管面;

(3)当流体所含的机械杂质有机物较多而流体的流速又较小时,部分机械杂质或有机物也会在换热器内沉积,形成疏松、多孔或胶状污垢。

2、换热器六类主要结垢过程

对于常用的换热器而言。根据结垢机理,我们一般将结垢分为以下几类:

(1)类析晶结垢:如水冷却系统,由于水中过饱和的钙、镁盐类由于温度、pH等变化而从水中结晶沉积在换热器表面,而形成了水垢;

(2)粒结垢:流体中悬浮的同体颗粒在换热面上的积聚;

(3)化学反应结垢:由于化学反应而造成的同体沉积;

(4)腐蚀结垢:换热介质腐蚀换热面,产生腐蚀产物沉积于受热面上而形成污垢;

(5)生物结垢:对于常用的冷却水系统来讲,工业水巾往往含有微生物及其所需的营养,这些微生物群体繁殖,其群体及其排泄物同泥浆等在换热表面形成生物垢;

(6)凝同结垢:在过冷的换热面上,纯液体或多组分溶液的高溶解组分凝同沉积。

以上的分类只是表明某个过程对形成该类污垢是一个主要过程。结垢往往是多种过程的共同作用结果,因此换热面上的实际污垢,常常是多种污垢混合在一起的。

3、结垢不清洗的危害

(1)结垢使设备热交换效率大幅下降,能源消耗大幅增加,生产成本上升;

(2)结垢使换热设备热传导工况恶化,传热面超温过热,引发鼓疱、裂纹、爆管等安全事故;

(3)结垢会引发垢下腐蚀损伤,造成设备穿孔泄漏,缩短设备使用寿命结垢会使生产工艺不稳,影响产品品质,引发质量事故。


换热器清洗方式的选择你知道有几种吗?

换热器清洗方式的选择

 

根据清洗方法的不同,主要清洗方法为物理清洗和化学清洗。

1、化学清洗  

化学清洗是通过化学清洗液产生某种化学反应,使换热器传热管表面的水垢和其他沉积物溶解、脱落或剥离。化学清洗不需要拆开换热器,简化了清洗过程,也减轻了清洗的劳动程度。其缺点是化学清洗液选择不当时,会对清洗物基体腐蚀破坏,造成损失。

化学清洗方法

◉ 循环法:用泵强制清洗液循环,进行清洗。

◉ 浸渍法:将清洗液充满设备,静置一定时间。

◉ 浪涌法:将清洗液充满设备,每隔一定时间把清洗液从底部卸出一部分,再将卸出的液体装回设备内以达到搅拌清洗的目的。

化学循环法清洗步骤:

图片

化学循环法示意图

(1)隔离设备,并把换热器内的水排放干净。

(2)用高压水清洗管道杂质并封闭系统。

(3)隔离阀和交换器之间装球阀,接上输送泵和导管,清洗剂从换热器的底部泵入,从顶部流出。

(4)注入所需要的清洗剂,反复循环清洗。

(5)随时排出气体并注入适当的水。

(6)使用PH 试纸测定清洗剂的有效性。

(7)回收清洗溶液并用清水反复冲洗至PH呈中性。

2、物理清洗

物理清洗是借助各种机械外力和能量使污垢粉碎、分离并剥离离开物体表面,从而达到清洗的效果。物理清洗方式都有一个共同点:高效、无腐蚀、安全、环保。其缺点是在清洗结构复杂的设备内部时其作用力有时不能均匀达到所有部位而出现“死角”。

常见的方法有,超声波除垢、PIG清管技术、电场除垢技术等。

图片

(1)高压水喷射清洗

利用柱塞泵产生的高压水经过特殊喷嘴喷向垢层,除垢彻底、效率高,但是其装机容器里大、耗水多。

(2)超声波除垢

主要是利用超声波声场处理流体,使流体种的成垢物质在超声场作用下,其物理形态和化学性能发生一系列变化,使之分散、粉碎、松散、松脱而不易附着管壁形成的积垢。

(3)管道内移动式除垢机具除垢

新型管道内移动式除垢机具效率较高,质量好,适用于油气输送管道及化工液体和水输送管道的除垢。

按驱动方式不通过,典型的管道内移动式除垢机具分为:

A.电力驱动移动式除垢机具;

B.液力驱动移动式除垢机具;

C.压缩空气驱动移动式除垢机具。

3、机械清洗

它是靠机械作用提供一种大于污垢粘附力的力而使污垢从换热面上脱落。这种方法可以除去化学方法不能除去的碳化污垢和硬质垢,但要清理干净管内垢层一般需要5-6遍,有时多达10遍,清管效率低,质量差。

4、微生物清洗

微生物清洗是利用微生物将设备表面附着的油污分解,使之转化为无毒无害的水溶性物质的方法。这种清洗把污染物(如油类)和有机物彻底分解,是一种真正意义上的环保型清洗技术。

物理清洗和化学清洗都存在着各自的优缺点,又具有很好的互补性。在实际应用过程中,通常都是把两者结合起来使用,以获得更好的清洗效果。

对化学清洗方法而言,清洗剂的选择对清洗效果有显著影响。