2021年 – 第 64 页 – 福佑德换热器清洗

Archives: 2021年5月13日

换热器密封垫,标准换热器根据其结构形式可分为三大类: 空冷式换热器、 板式换热器、 管式换热器

山东换热器密封垫,标准换热器型号的表示方法 标准换热器根据其结构形式可分为三大类: 空冷式换热器、 板式换热器、 管式换热器 一、 空冷式换热器 1、 各部结构形式 气流部分: 鼓风式空冷器(水平式、 斜顶式) ; 引风式空冷器 管束型式: 丝堵式管箱的管束、 可卸盖板式管箱的管束、 可卸帽式管箱的管束、 集合管式管箱的管束; 风机传动形式: V 带传动; 齿轮箱减速器传动; 电动机直接传动; 悬挂式 V 带传动, 电动机轴向上;悬挂式 V 带传动, 电动机轴向下 百叶窗型式: 山东换热器密封垫手动调节百叶窗; 自 动调节百叶窗 2、 各部形式与代号 管束型式与代号: 表 1 管束型式 代号 管箱型式 代号 翅片管型式 代号 鼓风式水平管束 GP 丝堵式管箱 S L 型翅片管 L 斜顶管束 X 可卸盖板式管箱 K1 双 L 型翅片管 LL 引风式水平管束 YP 可卸帽盖式管箱 K2 滚花型翅片管 KL 集合管式管箱 J 双金属轧制翅片管 DR 镶嵌型翅片管 G 3、 管束型号表示方法: 管束基管换热面积 M2 管排数 管束公称尺寸: 长× 宽 m 管程数 翅化比/翅化管型式 设计压力 MPa, 管箱型式 管束型式 4 、 风机型号表示方法: 5、 构架型号表示方法: 6、 百叶窗型山东换热器密封垫式表示方法: 叶片型式 叶轮直径×10× 10mm 风量调节方式 电 动 机 功风机传动方式 叶片数 通风方式 构架公称尺寸长×宽(对斜顶式构架为长×宽×斜边长) m, 开(闭) 型式 风箱型式 风机直径×10mm/台数 构架型式 公称尺寸, 长×宽, m 调节方式 7、 空冷器型号的表示方法: 二、 板式换热器: 1、 常用的板片波纹形式代号: 表 2 序号 波纹形式 代号 1 人字形波纹 R 2 水平平直波纹 P 3 球形波纹 Q 4 斜波纹 X 5 竖直波纹 S 2、 常用的框架形式代号: 表 3 序号 框架形式 代号 1 双支撑框架式 Ⅰ 2 带中间隔板双支撑框架式 Ⅱ 3 带中间隔板三山东换热器密封垫支撑框架式 Ⅲ 4 悬臂式 Ⅳ 5 顶杆式 Ⅴ 6 带中间隔板顶杆式 Ⅵ 7 活动压紧板落地式 Ⅷ 百叶窗型式, 公称尺寸/台数 构架型式, 公称尺寸, 开(闭) 型式/跨数 风机型式, 叶轮直径× 10× 10,MMM/台数 管束型式, 公称尺寸/片数 3、 板式换热器型号的表示方法: 三、 管式换热器: 本表示方法适用于卧式和立式换热器。 框架结构形式代号 垫片材料代号 换热器换热面积 设计压力 单板公称换热面积 板片波纹形式代号 板式换热器代号 ×××DN-PT/PS-A-LN/D-NT/NS Ⅰ (或Ⅱ ) 采用 碳素钢、 低合金钢冷拔钢管, 其管束分为Ⅰ 、 Ⅱ 类, 一级管束采用 较**、 **冷拔钢管, 二级采用普通冷拔钢管。 管/壳程数, 单壳程时, 只写 Nt。 LN-换热管公称长度(m), d-换热管外径(mm),当采用 Al、 Cu、 Ti 换热管时, 应在 LN/d 后面加材料符号, 如: LN山东换热器密封垫/D Cu。 公称换热面积(m2)。 管/壳程设计压力(MPa),压 力相等时, 只写 PT。 公称直径(mm), 对于釜式重拂器用分数表示, 分子为管箱内直径,分母为园筒内直径。 **个字母代表前端管箱型式 **个字母代表壳体型式 第三个字母代表后端结构型式 管壳式换热器的名称构造一览表


换热器维修,不洁净和易结垢的流体宜走管内,以便于清洗管子。

山东换热器维修2.结构设计工艺流程 2.1 列管式换热器的选用步骤: 哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例)。 (1)不洁净和易结垢的流体宜走管内,以便于清洗管子。 (2)腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。 (3)压强高的流体宜走管内,以免壳体受压。 程,且可采用多管程以增大流速。 (4)粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低 Re(Re>100)下即可达到湍流,以提高对流传热系数。在选择流体流径时,山东换热器维修首先考虑流体的压强、防腐蚀及清洗等要求,然后再校核对流传热系数和压强降。 7本设计以油和循环冷却水作为传热媒介,水走管内,油走壳程,因为水的压强高、循环冷却水较易结垢、需要提高流速。为便于水垢清洗,应使循环水走管程,大豆油走壳程,综合考虑做此选择。 2.2 流体流速的选择 增加流体在换热器中的流速,将加大对流传热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增大,从而可减山东换热器维修小换热器的传热面积。但是流速增加,又使流体阻力增大,动力消耗就增多。所以适宜的流速要通过经济衡算才能定出。此外,在选择流速时,还需考虑结构上的要求:选择高的流速,使管子的数目减少,对一定的传热面积,不得不采用较长的管子或增加程数。管子太长不易清洗,单程变为多程使平均温度差下降。由于本换热器设计,总热负荷小,不需要太高的对流传热系数,油和水又是液体,再加之平均温度的下降影响了换热,所以在常见流速中选择了0.5m/s。 2.3 流体两端温度的确定 若换热器中冷热流体的温度都由工艺条件所规定,就不存在确定流体两端温度的问题。若其中一个流体仅已知进口温度,则出口温度应由设计者来确定。例如用冷水冷却某热流体,冷水的进口温度可以根据当地的气温条件作出估计,而换热器出口的冷水温度,便需要根据经济衡算来决定。山东换热器维修为了节省水量,可使水的出口温度提高些,但传热面积就需要加大;为了减小传热面积,则要增加水量。两者是相互矛盾的。本次化工原理课程设计任务书的操作条件给出换热器中冷热流体的温度,因此就不存在确定流体两端温度的问题。 2.4 管子的规格和排列方法 (1)选择管径时,应尽可能使流速高些,但一般不应超过前面介绍的流速范围。易结垢、粘度较大的液体宜采山东换热器维修用较大的管径。我国目前试用的列管式换热器系列标准中仅有本设计以油和循环冷却水作为传热媒介,水走管内,油走壳程,因为水的压强高、循环冷却水较易结垢、需要提高流速。为便于水垢清洗,应使循环水走管程,大豆油走壳程,综合考虑做此选择。 2.2 流体流速的选择 增加流体在换热器中的流速,将加大对流传热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增大,从而可减小换热器的传热面积。但是流速增加,又使流体阻力增大,动力消耗就增多。所以适宜的流速要通过经济衡算才能定出。此外,在选择流速时,还需考虑结构上的要求:选择高的流速,使管子的数目减少,对一定的传热面积,不得不采用较长的管子或增加程数。管子太长不易清洗,单程变为多程使平均温度差下降。由于本换热器设计,总热负荷小,不需要太高的对流传热系数,山东换热器维修油和水又是液体,再加之平均温度的下降影响了换热,所以在常见流速中选择了0.5m/s。


换热器密封垫,U 形管换热器每根管子都弯成 U 形,管子两端均固定在同一管板上

山东换热器密封垫6(2)U 形管换热器。U 形管换热器每根管子都弯成 U 形,管子两端均固定在同一管板上,因此每根管子可以自由伸缩,从而解决补偿问题。这种型式换热器的结构也较简单,质量轻,适用于高温和高压的情况。其主要缺点是管程清洗比较困难;且因管子需一定的弯曲半径,管板利用率较差。 (3)浮头式的换热器。浮头式换热器两端管板中有一端不与外壳固定连接,该端称为浮头,这样当管束和壳体因温度差较大而热膨胀不同时,管束连同浮头就可在壳体内自由伸缩,而与外壳无关,从而解决热补偿问题。另外,由于固定端的管板是以法兰与壳体相连接的,因此管束可以从壳山东换热器密封垫体中抽出,便于清洗和检修。所以浮头式换热器应用较为普遍,但结构比较复杂。金属耗量多,造价较高。 本设计所需要的换热器用循环冷却水冷却,考虑到这一因素,估计该换热器的管壁温和壳体壁温之差较大,当两流体的温度差较大时,可以选用固定管板式。而且它具有结构简单和造价低廉的优点。故本次设计初步确定选用固定管板式。 一般换热器都用金属材料制成,其中碳素钢和低合金钢大多用于制造中、低压换热器;不锈钢除主山东换热器密封垫要用于不同的耐腐蚀条件外,奥氏体不锈钢还可作为耐高、低温的材料;铜、铝及其合金多用于制造低温换热器;镍合金则用于高温条件下;非金属材料除制作垫片零件外,有些已开始用于制作非金属材料的耐蚀换热器,如石墨换热器、氟塑料换热器和玻璃换热器等。 2.结构设计工艺流程 2.1 列管式换热器的选用步骤: 哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例)。 (1)不洁净和易结垢的流体宜走管内,以便于清洗管子。 (2)腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。 (3)压强高的流体宜走管内,以免壳体受压。 程,且可采用多管程以增大流速。 (4)山东换热器密封垫粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低 Re(Re>100)下即可达到湍流,以提高对流传热系数。在选择流体流径时,首先考虑流体的压强、防腐蚀及清洗等要求,然后再校核对流传热系数和压强降。 (2)U 形管换热器。U 形管换热器每根管子都弯成 U 形,管子两端均固定在同一管板上,因此每根管子可以自由伸缩,从而解决补偿问题。这种型式换热器的结构也较简单,质量轻,适用于高温和高压的情况。其主要缺点是管程清洗比较困难;且因管子需一定的弯曲半径,管板利用率较差。 (3)浮头式的换热器。浮头式换热器两端管板中有一端不与外壳固定连接,该端称为浮头,这样当管束和壳山东换热器密封垫体因温度差较大而热膨胀不同时,管束连同浮头就可在壳体内自由伸缩,而与外壳无关,从而解决热补偿问题。另外,由于固定端的管板是以法兰与壳体相连接的,因此管束可以从壳体中抽出,便于清洗和检修。所以浮头式换热器应用较为普遍,但结构比较复杂。金属耗量多,造价较高。 本设计所需要的换热器用循环冷却水冷却,考虑到这一因素,估计该换热器的管壁温和壳体壁温之差较大,当两流体的温度差较大时,可以选用固定管板式。而且它具有结构简单和造价低廉的优点。故本次设计初步确定选用固定管板式。 一般换热器都用金属材料制成,其中碳素钢和低合金钢大多用于制造中、低压换热器;不锈钢除主要用于不同的耐腐蚀条件外,奥山东换热器密封垫氏体不锈钢还可作为耐高、低温的材料;铜、铝及其合金多用于制造低温换热器;镍合金则用于高温条件下;非金属材料除制作垫片零件外,有些已开始用于制作非金属材料的耐蚀换热器,如石墨换热器、氟塑料换热器和玻璃换热器等。


换热器清洗,固定管板式。所谓固定管板式,即两端管板和壳体连接成一体的结构形式

山东换热器清洗(6)通过化工工艺计算,由总传热速率方程 Q=KSΔtm 初步算出传热面积 S,并确定换热器的基本尺寸按系列标准选择设备规格。 (7)计算管程、壳程 (8)计算初选设备的管、壳程流体的压强降,如超过工艺允许的范围,需调整流速,再确定管程数或折流板间距,或选择另一规格的换热器,重新计算压降直到压强降满足要求为止。以上设计过程还要牵涉到大量公式,其具体计算式子可以参考文献[1]。 1m 初步算出传热面积 S,并确定换热器的基本尺寸按系列标准选择设备规格。 (7)计算管程、壳程 (8)计算初选设备的管、壳程流体的压强降,如超过工艺允许的范围,需调整流速,再山东换热器清洗确定管程数或折流板间距,或选择另一规格的换热器,重新计算压降直到压强降满足要求为止。以上设计过程还要牵涉到大量公式,其具体计算式子可以参考文献[1]。 1.换热器的选择: 两流体温度变化情况:热流体大豆油的入口温度 133℃,出口温度 40℃;冷流体(循环水)进口温度 30℃,出口温度 40℃。由于两流体的温度不同,所以使管束和壳体的温度也不一样,因此它们的热膨胀程度也有差别。 列管式换热器中,由于冷热两流体温度不山东换热器清洗同,使壳体和管束的温度也不同。因此它们的热膨胀程度也有差别。若两流体的温度相差较大时,就可能由于应力而引起设备的变形,甚至弯曲和断裂,或管子从管板上松脱,因此**采用适当的温差补偿措施,消除或减小热应力。根据采取热补偿方法的不同,列管换热器可分为以下几种主要型式: (1)固定管板式。所谓固定管板式,即两端管板和壳体连接成一体的结构形式,因此它具有结构简单和造价低廉的优点,但壳程清洗困难,因此要求壳方流体应是较清洁且不容易结垢的物料。当两流体的温度差较大时,应考虑热补偿。而具有补偿圈(或称膨胀节)的固定管板式换热器,即在外壳的适当部位焊上一个补偿圈,当外壳和管束膨胀不同时,补偿圈发生弹性变山东换热器清洗形(拉伸或压缩),以适应外壳和管束的不同热膨胀。此法适用于两流体温度差小于 120℃壳程压力小于 60MPa 的场合。 换热器的选择: 两流体温度变化情况:热流体大豆油的入口温度 133℃,出口温度 40℃;冷流体(循环水)进口温度 30℃,出口温度 40℃。由于两流体的温度不同,所以使管束和壳体的温度也不一样,因此它们的热膨胀程度也有差别。 列管式换热器中,由于冷热两流体温度不同,使壳体和管束的温度也不同。因此它们的热膨胀程度也有山东换热器清洗差别。若两流体的温度相差较大时,就可能由于应力而引起设备的变形,甚至弯曲和断裂,或管子从管板上松脱,因此**采用适当的温差补偿措施,消除或减小热应力。根据采取热补偿方法的不同,列管换热器可分为以下几种主要型式: (1)固定管板式。所谓固定管板式,即两端管板和壳体连接成一体的结构形式,因此它具有结构简单和造价低廉的优点,但壳程清洗困难,因此要求壳方流体应是较清洁且不容易结垢的物料。当两流体的温度差较大时,应考虑热补偿。而具有补偿圈(或称膨胀节)的固定管板式换热器,即在外壳的适当部位焊上一个补偿圈,当外壳和管束膨胀不同时,补偿圈发生弹性变形(拉伸或压缩),以适应外壳和管束的不同热膨胀。此法适用于两山东换热器清洗流体温度差小于 120℃壳程压力小于 60MPa 的场合。


换热器清洗原因同时大量循环交换设备中存在的水垢

随着现代化工业的快速发展,冷却水的使用不仅用量越来越大,同时大量循环交换设备中存在的水垢由于得不到科学的清洗,导致了能源的消耗和环境的破坏,在设备遭到损害的同时降低了运行效率。冷却水在热交换过程中,由于冷媒流体(冷冻水)吸收了工作流体(冷却水)的热量,使其温度上升,此时原来溶于水中的Ca(HCO3)2和Mg(HCO3)2在温度的作用下析出CO2生成微溶于水的CaCO3和MgCO3。由于CaCO3和MgCO3的溶解度随温度的上升而下降,从水中结晶析出,当这些结晶物不断地沉积于换热器表面,便形成了很硬的水垢,不但影响了换热效率,同时增加了能耗,甚至还会因冷却水的流量不足和压力降低导致停机、停产。

  清洗在化学工业的生产过程中,由于很多方面的原因,换热器设备等和管道线路线中都会产生很多如结焦、油污垢、水垢、沉积物、腐蚀产物、聚合物、菌类、藻类、粘泥等污垢。

  产生的这些污垢会使设备和管道线路失效,装置系统会发生生产下降,能耗、物耗增加等不良情况,污垢腐蚀特别严重时还会使流程中断,装置系统被迫停产,直接造成各种经济损失,甚至还有可能发生恶性生产事故。

  在科学发展的今天要想完全的避免污垢的产生是几乎不可能的,所以,换热器等设备的清洗便成为工业生产,尤其是石油化工及热电工厂生产中所不可缺少的一个重要环节。


换热器按传热方式的不同分类有哪些?

换热器按传热方式的不同分类:

  1、混合式换热器

  这类换热器的主要工作原理是两种介质经接触而相互传递热量,实现传热,接触面积直接影响到传热量,这类换热器的介质通常一种是气体,另一种为液体,主要是以凉水塔设备为主体的传热设备,但通常又涉及传质,故很难区分与塔器的关系,通常归口为塔式设备,化工厂和发电厂用凉水塔为最典型的混合式换热器。

  2、蓄能式换热器(简称蓄能器)

  这种换热器的原理是热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,冷热交替使之到达传热量的目的。主要用于回收和利用高温废气的热量。

  3、间壁式换热器

  这类换热器原理是冷、热两种介质被固体间壁隔开,并通过间壁进行热量交换的,这类换热器的用量非常大,占总量的99%。根据结构不同可分为管式、板式,其他型式。


夹套式换热器是间壁式换热器的一种

夹套式换热器是间壁式换热器的一种,在容器外壁安装夹套制成,结构简单;但其加热面受容器壁面限制,传热系数也不高。为提高传热系数且使釜内液体受热均匀,可在釜内安装搅拌器.当夹套中通入冷却水或无相变的加热剂时,亦可在夹套中设置螺旋隔板或其它增加湍动的措施,以提高夹套一侧的给热系数。为补充传热面的不足,也可在釜内部安装蛇管。夹套式换热器广泛用于反应过程的加热和冷却。

  夹套式换热器主要用于反应器中,装在反应器外部形成一个封闭的夹层,使流体进入夹层内,通过器壁与反应器内物料进行热交换。夹套式换热器的结构比较简单,能在物料反应的同时进行换热,省去了另设换热设备的麻烦。夹套式换热器缺点是由于夹套的传热面不大,夹套间隙比较狭窄,流体流动速度不大,传热系数不高。夹套式换热器主要应用于用蒸气加热或用冷水冷却控制反应器内反应温度和压力的场合。因夹套内无法清洗,故不适于容易生垢和带有污物的介质进入夹套。

  夹套式换热器在容器外壁安装夹套制成结构简朴;但其加热面受容器壁面限制传热系数也不高.为提高传热系数且使釜内液体受热均匀可在釜内安装搅拌器.当夹套中通入冷却水或无相变的加热剂时亦可在夹套中设置螺旋隔板或其它增加湍动的措施以提高夹套一侧的给热系数.为补充传热面的不足也可在釜内部安装蛇管.夹套式换热器广泛用于反应过程的加热和冷却。

  应该注意带夹套换热的反应器,它的外筒受夹套内介质压力的作用,属于内压容器;而内筒则属于外压容器,所以在生产过程中一定要控制夹套介质的压力,如超过允许压力值,很可能使反应器内筒失稳而被压瘪,造成设备损坏。


冷凝器侧应用知识分析!

冷凝器侧应用:

1 冷却塔水冷却凝结水

2 海水、河水或井水冷却凝结水

3 乙二醇冷却凝结水

4 短路冷冻机组系统

5 地下水冷/热源系统

6 热回收系统

冷凝水侧热交换器可以起到以下作用:

保护冷凝器免受污染、结垢和腐蚀

代替冷凝器承受冷却水侧压力

能够在季节许可时不运行冷冻机组

能够实现热回收

节省昂贵的添加剂

冷却塔水冷却凝结水

图片

海水、河水、或井水冷却凝结水

图片

乙二醇冷却凝结水

短路冷冻机组系统

地下水冷/热源系统

图片

热回收系统

图片

蒸发侧的应用:

1 压力接力系统

2 分离冷却循环水 (无压力接力功能)

3 蓄冰系统

4 区域供冷系统

5 天花板供冷系统

蒸发器侧热交换器可以起到以下作用:

避免冷冻机组承受高压(压力接力系统)

减少昂贵、低效添加剂的用量

分离冷却水系统,以保证局部系统清洁度很高(电子元件生产)

减少泄漏所带来的损害


板式换热器结垢堵塞的主要原因及其危害

板式换热器结垢堵塞的主要原因及其危害

供热领域中,由于水处理设备运行不当,未达到软化要求的软化水直接补入系统中,使水中的可溶性钙、镁盐遇热分解为碳酸钙和氢氧化镁沉淀物黏结在换热器的受热面上,形成了坚硬的水垢。由于水垢的导热性能差,造成了换热器换热效率的降低以及系统阻力的增加,从而影响了供热的效果,给供热单位造成了严重的能源浪费。

工业系统中,带有颗粒物和纤维的流体进入换热器,当换热器流速设计不合理或者流道宽度小于允许宽度时,颗粒物和纤维就会慢慢沉积在换热器流道底部,造成换热器流通不畅阻力增加,严重时换热器不再换热,严重影响系统工艺运行。


板式换热器清洗民用结垢和工艺堵塞的清洗方式

板式换热器民用结垢和工艺堵塞的清洗方式

2.1.清洗剂的选择

清洗剂的选择,目前采用的是酸洗,它包括有机酸和无机酸。有机酸主要有:草酸、甲酸等。无机酸主要有:盐酸、硝酸等。根据换热器结垢和工艺、材质和水垢成分分析得出:

1)换热器流通面积小,内部结构复杂,清洗液若产生沉淀不易排放。

2)换热器材质为镍钛合金,使用盐酸为清洗液,容易对板片产生强腐蚀,缩短换热器的使用寿命。

通过反复试验发现,选择甲酸作为清洗液效果最佳。在甲酸清洗液中加入缓冲剂和表面活性剂,清洗效果更好,并可降低清洗液对板片的腐蚀。

通过对水垢样本的化学试验研究表明,甲酸能够有效地清除水垢。通过酸液浸泡试验,发现甲酸能有效地清除附在板片上的水垢,同时它对换热器板片的腐蚀作用也很小。

2.2.清除水垢的基本原理

1)溶解作用:酸溶液容易与钙、镁碳酸盐水垢发生反应,生成易溶化合物,使水垢溶解。

2)剥离作用:酸溶液能溶解金属表面的氧化物,破坏与水垢的结合,从而使附着在金属氧化物表面的水垢剥离,并脱落下来。

3)气掀作用:酸溶液与钙、镁、碳酸盐水垢发生反应后,产生大量的二氧化碳。二氧化碳气体在溢出过程中,对于难溶或溶解较慢的水垢层,具有一定的掀动力,使水垢从换热器受热表面脱落下来。

4)疏松作用:对于含有硅酸盐和硫酸盐混合水垢,由于钙、镁、碳酸盐和铁的氧化物在酸溶液中溶解,残留的水垢会变得疏松,很容易被流动的酸溶液冲刷下来。

2.1.清洗水垢的工艺要求

1)酸洗温度:提升酸洗温度有利于提高除垢效果,如果温度过高就会加剧酸洗液对换热器板片的腐蚀,通过反复试验发现,酸洗温度控制在60℃为宜。

2)酸洗液浓度:根据反复试验得出,酸洗液应按甲酸81.0%、水17.0%、缓冲剂1.2%、表面活性剂0.8%的浓度配制,清洗效果极佳。

3)酸洗方法及时间:酸洗方法应以静态浸泡和动态循环相结合的方法进行。酸洗时间为先静态浸泡2h,然后动态循环3 ̄4h。在酸洗过程中应经常取样化验酸洗浓度,当相邻两次化验浓度差值低于0.2%时,即可认为酸洗反应结束。

4)钝化处理:酸洗结束后,板式换热器表面的水垢和金属氧化物绝大部分被溶解脱落,暴露出崭新的金属,极易腐蚀,因此在酸洗后,对换热器板片进行钝化处理。

2.4.清洗水垢的具体步骤

1)冲冼:酸洗前,先对换热器进行开式冲洗,使换热器内部没有泥、垢等杂质,这样既能提高酸洗的效果,也可降低酸洗的耗酸量。

2)将清洗液倒入清洗设备,然后再注入换热器中。

3)酸洗:将注满酸溶液的换热器静态浸泡2h,然后连续动态循环3 ̄4h,其间每隔0.5h进行正反交替清洗。酸洗结束后,若酸液pH值大于2,酸液可重复使用,否则,应将酸洗液稀释中和后排掉。

4)碱洗:酸洗结束后,用NaOH,Na3PO4,软化水按一定的比例配制好,利用动态循环的方式对换热器进行碱洗,达到酸碱中和,使换热器板片不再腐蚀。

5)水洗:碱洗结束后,用清洁的软化水,反复对换热器进行冲洗0.5h,将换热器内的残渣彻底冲洗干净。

6)记录:清洗过程中,应严格记录各步骤的时间,以检查清洗效果。

在工业系统例如电厂和大量污水处理中,由于换热器非常大,水质很脏,换热器会出现经常性的堵塞和结垢,此时换热器再拆开处理就变得非常困难。解决的办法主要是系统反向冲洗和内置过滤器。

常规反向冲洗系统是在换热器进出口管道上安装反向冲洗阀,冲洗阀口径要和系统管路相匹配,当系统运行阻力大于设计阻力一倍时,可以判断换热器发生了堵塞,此时应停止换热器运行,关闭换热器进出口阀门,换热器出口冲洗阀接至少0.2MPA压力清水,打开换热器出口和进口清洗阀,清水从换热器进口清洗阀流出,当流出的水从浑浊变清澈后,可以重新接入洗垢用的清洗剂,对换热器进行去垢处理。

还有一种办法是在换热器水质比较脏的一侧,例如开式循环水侧,在换热器的进口通径中,装入和换热器通径大小一致的内置滤网,开式水进入换热器前,会先经过内置滤网过滤,然后才会进行换热。运行一段时间后,就可从换热器背板盲法兰处,打开盲法兰,把内置滤网抽出,进行冲洗或更换滤网,此种工艺也同样不用拆开换热器就可以进行清洗,节约了时间和资源,也不会影响工艺生产。

但是要说明的是,无论是反向冲洗还是内置过滤装置,对换热器的堵塞和结垢都只是起了延缓作用,而不能真正解决换热器的堵塞和结垢,要想延长换热器堵塞时间,最主要还是要从换热器初始设计时就要选择更加合理不宜堵塞的板型。要想完全去除换热器的水垢,还是要把换热器拆开进行酸洗和碱洗处理。

最后,换热器拆开清洗结束后,要对换热器进行打压试验,合格后方可使用。